已知实数x,y满足(x-根号x^2-2008)(y-根号y^2-2008)=2008 ,则3x^2-2y^2+3x-3y-2007

问题描述:

已知实数x,y满足(x-根号x^2-2008)(y-根号y^2-2008)=2008 ,则3x^2-2y^2+3x-3y-2007
已知实数x,y满足【x-根号下(x^2-2008)】【y-根号下(y^2-2008)】=2008 ,则3x^2-2y^2+3x-3y-2007的值是

x-根号(x^2-2008)可以看着是方程y^2-2xy+2008=0的一个解
同样y-(根号y^2-2008)也可以看着是方程x^2-2xy+2008=0的一个解
显然这两个解的值相等
于是y^2-2xy+2008=x^2-2xy+2008,从而y^2=x^2,
因而(x+y)(x-y)=0,从而就有x=-y或者x=y
当x=-y时,方程x^2-2xy+2008=0化简为3x^2+2008=0,显然方程无解,与题意不符,舍去
当x=y时,方程x^2-2xy+2008=0化简为x^2=2008,方程有解,与题意相符.
于是
3x^2-2y^2+3x-3y-2007=x^2-2007=2008-2007=1