观察这些勾股弦输三数组,猜想:对于整数勾股形,勾股中必有一个是什么数的倍数?能证明?
问题描述:
观察这些勾股弦输三数组,猜想:对于整数勾股形,勾股中必有一个是什么数的倍数?能证明?
一个直角三角形的三边长都是正整数,这样的直角三角形称为整数勾股形,其中三边的值叫做勾股弦三数组.下面给出一些勾股弦三数组(勾,股,弦):(3,4,5);(5,12,13);(7,24,25);(8,15,17);.
答
证明: 勾、股中必有4的倍数 任何整数都是下列4种形式之一:4m+1,4m+2,4m+3,4m,他们的平方分别是以下的形式4n+1,4n,4n+1,4n,因此,形式为4n+2和4n+3的数不能成为平方数. 先说明勾a,股b至少有一个偶数,既不能都是奇数....