为什么 已知A,B,C是平面上不共线的三点,O是三角形ABC的重心,动点P满足向量OP=1/3(1/2向量OA+1/2向量OB+2向量OC),则点P一定为AB边的三等分点.
问题描述:
为什么 已知A,B,C是平面上不共线的三点,O是三角形ABC的重心,动点P满足向量OP=1/3(1/2向量OA+1/2向量OB+2向量OC),则点P一定为AB边的三等分点.
若P不是三等份点,是什么点?
答
分别是三角形的中线交三边中点