已知数列an,a1=5,a2=2,an=2an-1+3an-2,n大于等于3,能否求出通项,如果能,是多少?

问题描述:

已知数列an,a1=5,a2=2,an=2an-1+3an-2,n大于等于3,能否求出通项,如果能,是多少?

an+an-1=3(an-1+an-2)
设bn=an+an-1那么bn-1=an-1+an-2
得{bn}为首项为a2+a1,公比为3等比数列
得an+an-1=10*(3∧n-2)
设·an=(3∧n-2)*10*cn,an-1=(3∧n-3)*10*cn-1
3cn+cn-1=3
将cn,cn-1换成·x,解得x=3/4,3cn+cn-1-3/4=3-3/4,转化得3[(cn)-9/4]=-[(cn-1)-9/4]
{(cn)-9/4}为首项(c1)-9/4公比为-1/3等比数列
得cn通项带入an=(3∧n-2)*10*cn得·an