高数 数列极限
问题描述:
高数 数列极限
lim(1+ 2^n + 3^n)^(1/n) n趋于无穷大
求极限
答
1+ 2^n + 3^n =3^n { 1+(2/3)^n +(1/3)^n } ,则(1+ 2^n + 3^n)^(1/n) = 3* { 1+(2/3)^n +(1/3)^n }^(1/n)由于1+(2/3)^n +(1/3)^n ≤ 2 ,由夹逼性定理知,{ 1+(2/3)^n +(1/3)^n }^(1/n) —﹥1 (n—﹥∞)所以(1+ 2^n ...1≤ 1+(2/3)^n +(1/3)^n≤ 2 而 1^(1/n) =1, 2^(1/n) —﹥1 (n—﹥∞)所以{ 1+(2/3)^n +(1/3)^n }^(1/n) —﹥1 (n—﹥∞)