证明Cos^A-Sin^A=1-2Sin^A=2Cos^A-1=cos^a-sin^a
问题描述:
证明Cos^A-Sin^A=1-2Sin^A=2Cos^A-1=cos^a-sin^a
答
根据余弦2倍角公式cos(a+b)=cosa*cosb-sina*sinbcos2a=cos(a+a)=cosa*cosa-sina*sina=cos²a-sin²a再根据三角函数的恒等式sin²a+cos²a=1进行换算cos²a-sin²a=1-sin²a-sin&sup...