函数f(x)=e^xlnx在点(1,f(1))处的切线方程是
问题描述:
函数f(x)=e^xlnx在点(1,f(1))处的切线方程是
答
'(x)=e^xlnx+e^x*1/x 切线的斜率k=f'(1)=e^1ln1+e=e f(1)=0 故切线方程是y-0=e(x-1) 即有y=ex-e
函数f(x)=e^xlnx在点(1,f(1))处的切线方程是
'(x)=e^xlnx+e^x*1/x 切线的斜率k=f'(1)=e^1ln1+e=e f(1)=0 故切线方程是y-0=e(x-1) 即有y=ex-e