正实数a、b、c满足a+b+c=1,求(a+1/a)(b+1/b)(c+1/c)的最小值.

问题描述:

正实数a、b、c满足a+b+c=1,求(a+1/a)(b+1/b)(c+1/c)的最小值.

∵正实数a、b、c满足a+b+c=1,
由均值不等式,a+1/a=a+1/(9a)*9
=10*[(1/(3^18*a^8)]^0.1
=10*3^(-1.8)*a^(-0.8),余者类推,
∴(a+1/a)(b+1/b)(c+1/c)
=10^3*3^(-5.4)*(abc)^(-0.8)
=10^3*3^(-5.4)*3^(2.4)=1000/27,
当a=b=c=1/3时取等号,
∴(a+1/a)(b+1/b)(c+1/c)的最小值是1000/27.
而x+1/x在(0,1/27]是减函数,