△ABC的顶点A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是(  ) A.x29-y216 =1 B.x216−y29=1 C.x29-y216 =1(x>3) D.x216−y29=1(x>4)

问题描述:

△ABC的顶点A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是(  )
A.

x2
9
-
y2
16 
=1
B.
x2
16
y2
9
=1
C.
x2
9
-
y2
16 
=1(x>3)
D.
x2
16
y2
9
=1(x>4)

如图设△ABC与圆的切点分别为D、E、F,
则有|AD|=|AE|=8,|BF|=|BE|=2,|CD|=|CF|,
所以|CA|-|CB|=8-2=6.
根据双曲线定义,所求轨迹是以B为焦点,实轴长为6的双曲线的右支,
方程为

x2
9
-
y2
16 
=1(x>3).
故选C