求y=cosx-2/cosx-1的定义域和值域

问题描述:

求y=cosx-2/cosx-1的定义域和值域


分式有意义,cosx -1≠0cosx≠1
x≠2kπ(k∈Z)
函数的定义域为(2kπ,2k+2π)(k∈Z)

y=(cosx -2)/(cosx -1)
ycosx -y=cosx -2
(y-1)cosx =y-2
cosx=(y-2)/(y-1)=(y-1-1)/(y-1)=1- 1/(y-1)
-1≤cosx-1≤(y-2)/(y-1)(y-2)/(y-1) -10y>1
(y-2)/(y-1)+1≥0(y-2+y-1)/(y-1)≥0(2y-3)/(y-1)≥0 y≥3/2或y综上,得y≥3/2 ,函数的值域为[3/2,+∞).