夹在两个平行平面之间的球、圆柱、圆锥在这两个平面上的射影都是等圆,则它们的体积之比为(  ) A.6:8:3 B.2:3:1 C.3:6:2 D.3:2:1

问题描述:

夹在两个平行平面之间的球、圆柱、圆锥在这两个平面上的射影都是等圆,则它们的体积之比为(  )
A. 6:8:3
B. 2:3:1
C. 3:6:2
D. 3:2:1

设射影圆的半径为R,依题意,球、圆柱、圆锥的高均为2R,
∴V=

4
3
πR3
V圆柱=πR2×(2R)=2πR3
V圆锥=
1
3
πR2×(2R)=
2
3
πR3
∴V:V圆柱:V圆锥=
4
3
:2:
2
3
=2:3:1.
故选B.