如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD,BC分别相交于M、N,与BD相交于点O,连接BM,DN
问题描述:
如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD,BC分别相交于M、N,与BD相交于点O,连接BM,DN
(1)求证:四边形MBND是菱形
(2)若AB=4,AD=8,求MN的长
答
(1) ∵矩形ABCD ∴AD∥CB ∴∠MDB=∠NBD ∵MN垂直平分BD ∴BO=DO ∵∠ MOD=∠NOB ∴△MOD≌△NOB(ASA) ∴ON=OM ∴BD⊥MN且BD、MN互相平分 ∴四边形MBND是菱形 (2)
设MD=x ∵菱形MBND ∴MD=MB=x ∵AB=8 ∴AM=8-x ∵矩形ABCD ∴∠A=90°,AB=8 ∴AB2+AM2=BM2 ∴16+X2= (8-X) 2∴X=5 在直角三角形ABD中,AD=8,AB=4 ∴BD=4根号5 ∴BO=2根号5 ∴OM=根号5 ∴MN=2OM=2根号5