如图9,在矩形ABCD中,AE平分角DAB交DC于点E,连接BE,过点E作EF⊥BE交AD于F.(1)求证:角DEF=角CBE;
问题描述:
如图9,在矩形ABCD中,AE平分角DAB交DC于点E,连接BE,过点E作EF⊥BE交AD于F.(1)求证:角DEF=角CBE;
(2)请找出图中与EB相等的线段(不另添加辅助线和字母),并说明理由.
答
①
∵∠EBC+∠CEB=90°
∠DEF+∠CEB=180°-∠FEB=90°
∴∠DEF=∠CBE
②EB=FE
∵DC‖AB,AE平分∠DAB
∴∠DEA=∠DAB,∠DEA=∠EAB
∴∠DEA=∠DAE ∴DA=DE
∵矩形ABCD ∴DA=CB ∴DE=CB
由①知∠DEF=∠CBE
所以△DEF≌△CBE(ASA)
∴EB=FE
--------------------------