已知等差数列{an}中,d>0,a3a7=-16,a2+a8=0,设Tn=|a1|+|a2|+…+|an|.求:(I){an}的通项公式an;(II)求Tn.
问题描述:
已知等差数列{an}中,d>0,a3a7=-16,a2+a8=0,设Tn=|a1|+|a2|+…+|an|.求:
(I){an}的通项公式an;
(II)求Tn.
答
(1)由等差数列的性质可得a2+a8=a3+a7=0,∵a3a7=-16,且d>0(2分)∴a3=-4,a7=4,4d=a7-a3=8∴d=2∴an=a3+(n-3)d=-4+2(n-3)=2n-10.…(6分)(II)当1≤n≤5时,Tn=|a1|+|a2|+…+|an|=-(a1+a2+…an)=-−8...
答案解析:(1)由等差数列的性质可得a2+a8=a3+a7=0,结合a3a7=-16,且d>0可求a3,a7,进而可求公差d,等差数列的通项
(II)结合(I)的通项,可知需要对n分类讨论:当1≤n≤15时Tn=|a1|+|a2|+…+|an|=-(a1+a2+…an)
当n≥6时Tn=|a1|+|a2|+…+|an|=-(a1+a2+…a5)+a6+a7+…+an=-2(a1+a2+…+a5)+a1+a2+…+an,从而可求
考试点:数列的求和;等差数列的通项公式.
知识点:本题主要考查了等差数列 的性质的应用,等差数列的通项公式an=am+(n-m)d及d=
、等差数列求和公式的应用,属于综合性试题
an−am
n−m