在三棱锥P-ABC中,三条侧棱PA,PB,PC两两垂直,H是△ABC的垂心 求证:(1)PH⊥底面ABC (2)△ABC是锐角三角形.

问题描述:

在三棱锥P-ABC中,三条侧棱PA,PB,PC两两垂直,H是△ABC的垂心
求证:(1)PH⊥底面ABC   (2)△ABC是锐角三角形.

证明:(1)连接AH并延长交BC于一点E,连接PH,由于PA,PB,PC两两垂直可以得到PA⊥面PBC,而BC⊂面PBC,∴BC⊥PA,又H是三角形ABC的垂心,故AE⊥BC,又AE∩PA=A,∴BC⊥面PAE,而PH⊂面PAE,∴PH⊥BC,同理可以证明...