已知函数f(x)=1/3ax3-bx2+(2-b)x+1在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2.(1)证明a>0;(2)若z=a+2b,求z的取值范围.
问题描述:
已知函数f(x)=
ax3-bx2+(2-b)x+1在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2.1 3
(1)证明a>0;
(2)若z=a+2b,求z的取值范围.
答
求出函数f(x)的导函数f'(x)=ax2-2bx+2-b.(1)由函数f(x)在x=x1处取得极大值,在x=x2处取得极小值,知x1,x2是f'(x)=0的两个根.所以f'(x)=a(x-x1)(x-x2)当x<x1时,f(x)为增函数,f'(x)>0,由...