如图,Rt△BDE中,∠BDE=90°,BC平分∠DBE交DE于点C,AC⊥CB交BE于点A,△ABC的外接圆的半径为r.(1)若∠E=30°,求证:BC•BD=r•ED;(2)若BD=3,DE=4,求AE的长.
问题描述:
如图,Rt△BDE中,∠BDE=90°,BC平分∠DBE交DE于点C,AC⊥CB交BE于点A,△ABC的外接圆的半径为r.
(1)若∠E=30°,求证:BC•BD=r•ED;
(2)若BD=3,DE=4,求AE的长.
答
(1)证明:取AB中点O,△ABC是Rt△,AB是斜边,O是外接圆心,连接CO,
∴BO=CO,∠BCO=∠OBC,
∵BC是∠DBE平分线,
∴∠DBC=∠CBA,
∴∠OCB=∠DBC,
∴OC∥DB,(内错角相等,两直线平行),
∴
=OC BD
,把比例式化为乘积式得BD•CE=DE•OC,CE DE
∵OC=r,
∴BD•CE=DE•r.
∵∠D=90°,∠E=30°,
∴∠DBE=60°,
∴∠CBE=
∠DBE=30°,1 2
∴∠CBE=∠E,
∴CE=BC,
∴BC•BD=r•ED.
(2) BD=3,DE=4,根据勾股定理,BE=5,
设圆的半径长是r,则OC=OA=r,
∵OC∥DB,
∴△OCE∽△BDE,
∴
=OC BD
=OE BE
,即CE DE
=r 3
=OE 5
CE 4
解得:OE=
r,CE=5 3
r.4 3
CH=
=OC•CE OE
r,4 5
∵BC平分∠DBE交DE于点C,则△BDC≌△BHC,
∴BH=BD=3,
则HE=2.
∴CD=CH=
r.4 5
在直角△CHE中,根据勾股定理得:CH2+EH2=CE2,
即(
r)2+22=(4 5
r)2,解得:r=4 3
,15 8
则AE=BE-2r=5-
=15 4
.5 4