如图,在△ABC中,E、F分别是AB、AC上的点,AD平分∠BAC,DE⊥AB,DF⊥AC,求证:AD垂直平分EF.

问题描述:

如图,在△ABC中,E、F分别是AB、AC上的点,AD平分∠BAC,DE⊥AB,DF⊥AC,求证:AD垂直平分EF.

证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,
∴DE=DF,∠EAD=∠FAD,∠AED=∠AFD=90°,
∴∠EDA=180°-∠AED-∠EAD,∠FDA=180°-∠AFD-∠FAD,
∴∠EDA=∠FDA,
∵DE=DF(已证),
∴DG垂直平分EF(三线合一),
即AD垂直平分EF.