24、如图,在等腰梯形ABCD中,∠C=60°,AD∥BC,且AD=DC. E,F分别在AD,DC的延长线上,且DE=CF、AF,BE交于点P,且分别交DC,BC于点H,G.
问题描述:
24、如图,在等腰梯形ABCD中,∠C=60°,AD∥BC,且AD=DC. E,F分别在AD,DC的延长线上,且DE=CF、AF,BE交于点P,且分别交DC,BC于点H,G.
(1)求证:AF=BE;
(2)请你猜测∠BPF的度数,并证明你的结论;
(3)延长BA,CD相交于M,若AD=24,BP=27,试求三角形MBP和三角形MBH的面积比.
答
(1)∵AB=CD,AD=DC,∴BA=AD,∠BAE=∠ADF,∵DE=CF,∴AE=DF,∴△BAE≌△ADF(SAS).∴BE=AF.(3分)(2)猜测∠BPF=120°.(1分)∵由(1)△BAE≌△ADF,∴∠ABE=∠DAF.∴∠BPF=∠ABE+∠BAP=∠BAE.而AD∥BC,∠C=...