某校在“五•一”期间组织学生外出旅游,如果单独租用45座的客车若干辆,恰好坐满;如果单独租用60座的客车,可少租一辆,并且余30个座位. (1)求外出旅游的学生人数是多少,单租45

问题描述:

某校在“五•一”期间组织学生外出旅游,如果单独租用45座的客车若干辆,恰好坐满;如果单独租用60座的客车,可少租一辆,并且余30个座位.
(1)求外出旅游的学生人数是多少,单租45座客车需多少辆?
(2)已知45座客车每辆租金250元,60座的客车每辆租金300元,为节省租金,并且保证每个学生都能有座,决定同时租用两种客车.使得租车总数可比单租45座客车少一辆,问45座客车和60座客车分别租多少辆才能使得租金最少?

(1)设学生人数为x人,单租45座客车为y辆,
由题意,得

x=45y
x=60(y−1)−30

解,得
x=270
y=6

答:学生总人数为270人,单租45座客车需6辆.
(2)(解法一)
由题意及(1)知:两种客车同时租用共需5辆.
设45座客车z辆,则60座客车为(5-z)辆.
要使每个学生都有座,需有45z+60(5-z)≥270.
解之,得z≤2.
当z=2时,租金为:2×250+3×300=1400(元);
当z=1时,租金为:1×250+4×300=1450(元).
答:由上可知:45座车租2辆,60座车租3辆使得租金最少.
(解法二)由题意,根据(1)知,两种客车共租5辆,其方案有
①45座车1辆,60座车4辆;
②45座车2辆,60座车3辆;
③45座车3辆,60座车2辆;
④45座车4辆,60座车1辆.
其中:方案①共有:1×45+4×60=285(座),
租金:1×250+4×300=1450(元);
方案②共有:2×45+3×60=270(座),
租金:2×250+3×300=1400(元);
方案③共有:3×45+2×60=255(座),不能满足每人都有座;
方案④共有:4×45+60=240(座),不能满足每人都有座.
由上可知方案②最好.
答:租245座车2辆,60座车3辆租金最少.