甲、乙两种商品,经营销售这两种商品所能获得的利润依次是p(万元)和q(万元),它们与投入资金x(万元)的关系有经验公式p=15x,q=35x.今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少?能获得多大的利润?
问题描述:
甲、乙两种商品,经营销售这两种商品所能获得的利润依次是p(万元)和q(万元),它们与投入资金x(万元)的关系有经验公式p=
x,q=1 5
3 5
.今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少?能获得多大的利润?
x
答
知识点:本题考查了二次根式在实际问题中的运用.关键是根据题意列方程,两边平方去根号转化为关于x的一元二次方程,利用判别式求解.
设对甲、乙两种商品的资金投入分别分别为x,(3-x)万元,设获取利润为s,则s=15x+353−x,两边平方,整理得x2+(9-10s)x+25s2-27=0,△=(9-10s)2-4×(25s2-27)≥0,解得s≤189180=1.05,可知最大利润为s=1.05...
答案解析:根据3万元资金投入经营甲、乙两种商品,设投入甲x万元,则投入乙(3-x)万元,根据总利润=甲的利润+乙的利润,列方程并平方整理为关于x的一元二次方程,由△≥0,求s的最大值,并求出此时x的值.
考试点:二次根式的应用.
知识点:本题考查了二次根式在实际问题中的运用.关键是根据题意列方程,两边平方去根号转化为关于x的一元二次方程,利用判别式求解.