求下列函数的定义域、值域及单调递增区间

问题描述:

求下列函数的定义域、值域及单调递增区间
(1)y=2sin(四分之派-x)
(2)y=log1/2底sinx

(1)
定义域:x∈R
值域:-1≤sin(π/4-x)≤1 -2≤2sin(π/4-x)≤2
值域为[-2,2]
y=2sin(π/4-x)=-2sin(x-π/4)
x-π/4∈[π/2+2kπ,3π/2+2kπ] x∈[3π/4+2kπ,7π/4+2kπ] k∈z
单调递增区间[3π/4+2kπ,7π/4+2kπ] k∈z
(2)y=log1/2底sinx
定义域 sinx>0 x∈(2kπ,π+2kπ)
值域:00=log1/2(1)≤log1/2(sinx)→+∞
值域为[0,+∞)
单调递增区间为sinx大于零时的减区间
x∈[π/2+2kπ,π+2kπ) k∈zx-π/4∈[π/2+2kπ,3π/2+2kπ] ??为啥啊y=-2sin(x-π/4),当sin(x-π/4)单调减的时候整个复合函数单调递增(因为前面的负号)也就是要求sin(x-π/4)的减区间了,正弦函数的减区间为 [π/2+2kπ,3π/2+2kπ](可以看一下正弦函数的图像帮助一下)也就是x-π/4∈[π/2+2kπ,3π/2+2kπ] 为复合函数的增区间,解出x为[3π/4+2kπ,7π/4+2kπ]k∈z有帮助请采纳,祝你学习进步,谢谢