圆球体积公式的推导过程?

问题描述:

圆球体积公式的推导过程?

以球的一条直径为轴;球心置于坐标原点;所选直径与Z轴重合.则轴上在距球心z处与轴垂直的截面圆半径为r=√(R^2-z^2).其面积为π·r^2=π·(R^2-z^2). 则以它为底,以dz为高的圆柱形微元体积为 π·(R^2-z^2)dz. 则圆球的体积公式为∫(从-R到R)π·(R^2-z^2)dz =π·R^2(R-(-R))-π·(1/3)·(2R^3) =(4/3)π·R^3

将一个底面半径R高为R的圆柱中心挖去一个等底等高的圆椎.剩下的部分与一个半球用平面去割时处处面积相等.等出它们体积相等的结论.而那个被挖体的体积好求.就是半球体积了.V=2/3πR^3 .因此一个整球的体积为4/3πR^3...