若自然数n+3与n+7都是质数,求n除以6的余数.

问题描述:

若自然数n+3与n+7都是质数,求n除以6的余数.

不妨将n分成六类,n=6k,n=6k+1,…,n=6k+5,然后讨论.当n=6k时,n+3=6k+3=3(2k+1)与n+3为质数矛盾;当n=6k+1时,n+3=6k+4=2(3k+2)与n+3为质数矛盾;当n=6k+2时,n+7=6k+9=3(2k+3)与n+7为质数矛盾;当n=6k+3...