若n为自然数,n+3与n+7都是质数,求n除以3所得的余数.

问题描述:

若n为自然数,n+3与n+7都是质数,求n除以3所得的余数.

∵n除以3所得的余数只可能为0、1、2三种.①若余数为0,即n=3k(k是一个非负整数,下同),则n+3=3k+3=3(k+1),所以3|n+3,又3≠n+3,故n+3不是质数,与题设矛盾.②若余数为2,且n=3k+2,则n+7=3k+2+7=3(k+3),...