数列an满足a1=a2=a3=1 an+a(n+1)+a(n+2)+a(n+3)=cos(nπ/2) 求S2014
问题描述:
数列an满足a1=a2=a3=1 an+a(n+1)+a(n+2)+a(n+3)=cos(nπ/2) 求S2014
sn为数列的前n项和
有几个答案供参考,但请给出详解过程
A -503 B 502 C -2 D 2
答
分组:
S2014=a1+a2+(a3+a4+a5+a6)+(a7+a8+a9+a10)+...+(a2011+a2012+a2013+a2014)
括号内规律:第n个括号的首项下标为第3+4(n-1)=4n-1,共(2011+1)/4=503个.
考察第k个括号内:
a(4k-1)+a(4k-1+1)+a(4k-1+2)+a(4k-1+3)=cos[(4k-1)π/2]
=cos(2kπ -π/2)=cos(-π/2)=0,即各括号内相加的和均=0
S2014=a1+a2+0+0+...+0=a1+a2=1+1=2
选D.