系数矩阵的秩不等于增广矩阵的秩,则非线性方程组无解,如果有解,系数矩阵的秩与未知数个数相等则有唯一

问题描述:

系数矩阵的秩不等于增广矩阵的秩,则非线性方程组无解,如果有解,系数矩阵的秩与未知数个数相等则有唯一

①系数矩阵的秩不等于增广矩阵的秩,则非线性方程组无解
证明:假如方程组有解,把解代入原方程组,则增广矩阵的末列由系数矩阵的列线性表示.
增广矩阵的秩=系数矩阵的秩.矛盾.所以方程组无解.
②如果有解,系数矩阵的秩与未知数个数相等则有唯一 .
未知数个数即系数矩阵的列数n.增广矩阵的秩也是这个列数n.增广矩阵的行秩也是n.
保留增广矩阵的行的最大无关组所对应的方程.[其他方程可以用他们线性表示,可以去掉]
而剩下的方程组,是一个“克莱姆”方程组(系数行列式≠0的方程组),解唯一.