急!y=1/(x+√(1+x∧2))求导,结果.
问题描述:
急!y=1/(x+√(1+x∧2))求导,结果.
答
y=1/[x+√(1+x^2)]那么y'= -1/[x+√(1+x^2)]^2 * [x+√(1+x^2)]'而[x+√(1+x^2)]'= 1 +x/√(1+x^2)=[x+√(1+x^2)] / √(1+x^2)所以y'= -1/[x+√(1+x^2)]^2 * [x+√(1+x^2)]'= -1/[x+√(1+x^2)]^2 *[x+√(1+x^2)] / ...