如图,AB是⊙O的直径,点C在⊙O上,∠CAB的平分线交⊙O于点D,过点D作AC的垂线交AC的延长线于点E,连接BC交AD于点F.(1)猜想ED与⊙O的位置关系,并证明你的猜想;(2)若AB=6,AD=5,求AF的长.
问题描述:
如图,AB是⊙O的直径,点C在⊙O上,∠CAB的平分线交⊙O于点D,过点D作AC的垂线交AC的延长线于点E,连接BC交AD于点F.
(1)猜想ED与⊙O的位置关系,并证明你的猜想;
(2)若AB=6,AD=5,求AF的长.
答
(1)ED与⊙O的位置关系是相切.理由如下:连接OD,∵∠CAB的平分线交⊙O于点D,∴CD=BD,∴OD⊥BC,∵AB是⊙O的直径,∴∠ACB=90°,即BC⊥AC,∵DE⊥AC,∴DE∥BC,∴OD⊥DE,∴ED与⊙O的位置关系是相切;(2)连...
答案解析:(1)连接OD,根据∠CAB的平分线交⊙O于点D,则
=CD
,依据垂径定理可以得到:OD⊥BC,然后根据直径的定义,可以得到OD∥AE,从而证得:DE⊥OD,则DE是圆的切线;BD
(2)首先证明△FBD∽△BAD,依据相似三角形的对应边的比相等,即可求DF的长,继而求得答案.
考试点:切线的判定;角平分线的性质;勾股定理;相似三角形的判定与性质.
知识点:本题考查了切线的判定定理,相似三角形的判定与性质,以及切割线定理,把求AF的长的问题转化成求相似三角形的问题是关键.