在△ABC中,已知∠A=80°,∠C=30°,现把△CDE沿DE进行不同的折叠得△C′DE,对折叠后产生的夹角进行探究: (1)如图(1)把△CDE沿DE折叠在四边形ADEB内,则求∠1+∠2的和; (2)如图(2)
问题描述:
在△ABC中,已知∠A=80°,∠C=30°,现把△CDE沿DE进行不同的折叠得△C′DE,对折叠后产生的夹角进行探究:
(1)如图(1)把△CDE沿DE折叠在四边形ADEB内,则求∠1+∠2的和;
(2)如图(2)把△CDE沿DE折叠覆盖∠A,则求∠1+∠2的和;
(3)如图(3)把△CDE沿DE斜向上折叠,探求∠1、∠2、∠C的关系.
答
(1)∠1+∠2=180°-2∠CDE+180°-2∠CED
=360°-2(∠CDE+∠CED)
=360°-2(180°-∠C)
=2∠C
=60°;
(2)连接DG,
∠1+∠2=180°-∠C′-(∠ADG+∠AGD)
=180°-30°-(180°-80°)
=50°;
(3)∠2-∠1=180°-2∠CED-(2∠CDE-180°)
=360°-2(∠CDE+∠CED)
=360°-2(180°-∠C)
=2∠C
所以:∠2-∠1=2∠C.