如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(
问题描述:
如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0).
(1)试写出点A、B之间的距离d(厘米)与时间t(秒)之间的函数表达式;
(2)问点A出发后多少秒两圆相切?
答
(1)当0≤t≤5.5时点A在点B的左侧,此时函数表达式为d=11-2t,
当t>5.5时点A在点B的右侧,圆心距等于点A走的路程减去11,此时函数表达式为d=2t-11;
(2)分四种情况考虑:两圆相切可分为如下四种情况:
①当两圆第一次外切,由题意,
可得11-2t=1+1+t,t=3;
②当两圆第一次内切,由题意,
可得11-2t=1+t-1,t=
;11 3
③当两圆第二次内切,由题意,可得2t-11=1+t-1,t=11;
④当两圆第二次外切,由题意,可得2t-11=1+t+1,t=13.
所以,点A出发后3秒、
秒、11秒、13秒时两圆相切.11 3