[log3(4)+log根下3(2)][log2(9)+log4(根3)]
问题描述:
[log3(4)+log根下3(2)][log2(9)+log4(根3)]
答
[log₃4+log‹√₃›2][log₂9+log₄√3]
原式=[log₃4+log₃4][log₂9+log₂3^(1/4)]
=(4log₃2)[(9/4)log₂3]=9(log₃2)(1/log₃2)=9
答
[log3(4)+log根下3(2)][log2(9)+log4(根3)]
=[2log3(2)+2log3(2)][2log2(3)+1/4log2(3)]
=4log3(2)*9/4log2(3)
=4*9/4*log3*log2(3)
=9