如图,点EFGH分别位于边长为2的正方形ABCD的四条边上,且AE=BF=CG=DH,知四边形EFGH为正方形,当E位于何处时
问题描述:
如图,点EFGH分别位于边长为2的正方形ABCD的四条边上,且AE=BF=CG=DH,知四边形EFGH为正方形,当E位于何处时
正方形efgh面积最小,最小面积是?
答
设小正方形面积为y,AE=BF=x,那么EB=2-x,所以y=EF²=BF²+EF²=x²+(2-x)²,其中0≤x≤2.计算到这里,有两种方法,如果你未上高中,可用二次函数方法解,解法如下:y=x²+(2-x)²=2x²-4...