(1)填空:(1/a)-(1/a+1)=( )
问题描述:
(1)填空:(1/a)-(1/a+1)=( )
(1/a+1)-(1/a+2)=
(1/a+n)-(1/a+n+1)=
(2)计算:[1/a(a+1)]+[1/(a+1)(a+2)]+[1/(a+2)(a+3)]+.+[1/(a+2007)(a+2008)]
=
答
1、(1)原式=1/a(a+1)
(2)原式=1/(a+1)(a+2)
(3)原式=1/(a+n)(a+n+1)
2、原式=(1/a)-(1/a+1)+(1/a+1)-(1/a+2)+(1/a+2)-(1/a+3)+(1/a+3)-.+1/(a+2007)-1/(a+2008)
=1/a-1/(a+2008)
=2008/a(a+2008)