如图,在三棱柱ABC-A1B1C1中,H是正方形AA1B1B的中心,AA1=22,C1H⊥平面AA1B1B,且 C1H=5.
问题描述:
如图,在三棱柱ABC-A1B1C1中,H是正方形AA1B1B的中心,AA1=22,C1H⊥平面AA1B1B,且 C1H=5.
(Ⅰ)求异面直线AC与A1B1所成角的余弦值;
(Ⅱ)求二面角A-A1C1-B1的正弦值;
(Ⅲ)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM的长.
答
方法一:如图所示,建立空间直角坐标系,点B为坐标原点.依题意得 A(22,0,0),B(0,0,0),C(2,-2,5)A1(22,22,0),B1(0,22,0),C1(2,2,5)易得 AC→=(-2,-2,5),A1B1→=(-22,0,0),于是 cos〈AC→,A&1B1→>=AC→•A1B1→|...