已知函数f(x)是定义在R上的单调奇函数,且f(1)=-2,解不等式f(x)+f(2x-x^2-2)
问题描述:
已知函数f(x)是定义在R上的单调奇函数,且f(1)=-2,解不等式f(x)+f(2x-x^2-2)
数学人气:233 ℃时间:2019-10-10 08:25:16
优质解答
解 ∵ f(x)是定义在R上的奇函数
∴ f(-x)=-f(x)且 f(0)=0
已知 f(1)=-2
而 -2<0,f(0)=0
∴ f(1)<f(0)
又已知f(x)是定义在R上的单调函数
∴ f(x)是定义在R上的单调减函数
不等式f(x)+f(2x-x^2-2)<0同解于:
f(2x-x^2-2)<-f(x)
又f(x)是定义在R上的奇函数
∴ f(2x-x^2-2)<f(-x)
又f(x)是定义在R上的单调减函数
∴ 2x-x^2-2>-x
x^2-3x+2<0
解得:1<x<2
∴ 不等式f(x)+f(2x-x^2-2)<0的解集为:1<x<2
∴ f(-x)=-f(x)且 f(0)=0
已知 f(1)=-2
而 -2<0,f(0)=0
∴ f(1)<f(0)
又已知f(x)是定义在R上的单调函数
∴ f(x)是定义在R上的单调减函数
不等式f(x)+f(2x-x^2-2)<0同解于:
f(2x-x^2-2)<-f(x)
又f(x)是定义在R上的奇函数
∴ f(2x-x^2-2)<f(-x)
又f(x)是定义在R上的单调减函数
∴ 2x-x^2-2>-x
x^2-3x+2<0
解得:1<x<2
∴ 不等式f(x)+f(2x-x^2-2)<0的解集为:1<x<2
我来回答
类似推荐
- 已知函数y=f(x)是定义在R上的偶函数,当x<0时,f(x)是单调递增的,则不等式f(x)>f(1-2x)的解集是?
- 定义在R上的单调函数f(x)满足任意X,Y均有f(x+y)=f(x)+f(y)且f(1)=1 解不等式:f(x-x^2+2)+f(2x)+2
- 已知奇函数份f(x)在定义域[—3,3]上单调递减.解不等式f(x^2-2x )+f(x-2)
- 函数f(x)是定义在R上的奇函数,且f(2)=0 f(x)在[0,1]上单调递增,在(1,+∞)上单调递减,不等式f(x)≥0解集是
- 已知定义在R上的函f(x)满足f(x)=f(4-x),又函数f(x+2)在[0,+∞]上单调递减.(1)求不等式f(3x)>f(2x-1)的
答
解 ∵ f(x)是定义在R上的奇函数
∴ f(-x)=-f(x)且 f(0)=0
已知 f(1)=-2
而 -2<0,f(0)=0
∴ f(1)<f(0)
又已知f(x)是定义在R上的单调函数
∴ f(x)是定义在R上的单调减函数
不等式f(x)+f(2x-x^2-2)<0同解于:
f(2x-x^2-2)<-f(x)
又f(x)是定义在R上的奇函数
∴ f(2x-x^2-2)<f(-x)
又f(x)是定义在R上的单调减函数
∴ 2x-x^2-2>-x
x^2-3x+2<0
解得:1<x<2
∴ 不等式f(x)+f(2x-x^2-2)<0的解集为:1<x<2