(1)y=2x^4+2x²+1(2)y=1/(x²-2x+5)求最大值最小值
问题描述:
(1)y=2x^4+2x²+1(2)y=1/(x²-2x+5)求最大值最小值
答
(1)y=2x^4+2x^2+1
=2(x^4+x^2+1/4)+1/2
=2(x^2+1/2)^2+1/2.
∴x=0时,
所求最小值为:1.
不存在最大值!
(2)y=1/(x²-2x+5)
→yx²-2yx+5y-1=0.
判别式不小于零,故
(-2y)²-4y(5y-1)≥0
且二次项系数y≠0.
解得,0