如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D移动.(1)P、Q两点从出发开始到几秒?四边形PBCQ的面积为33cm2;(2)P、Q两点从出发开始到几秒时?点P和点Q的距离是10cm.

问题描述:

如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D移动.

(1)P、Q两点从出发开始到几秒?四边形PBCQ的面积为33cm2
(2)P、Q两点从出发开始到几秒时?点P和点Q的距离是10cm.

(1)设P、Q两点从出发开始到x秒时四边形PBCQ的面积为33cm2
则PB=(16-3x)cm,QC=2xcm,
根据梯形的面积公式得

1
2
(16-3x+2x)×6=33,
解之得x=5,

(2)设P,Q两点从出发经过t秒时,点P,Q间的距离是10cm,
作QE⊥AB,垂足为E,
则QE=AD=6,PQ=10,
∵PA=3t,CQ=BE=2t,
∴PE=AB-AP-BE=|16-5t|,
由勾股定理,得(16-5t)2+62=102
解得t1=4.8,t2=1.6.
答:(1)P、Q两点从出发开始到5秒时四边形PBCQ的面积为33cm2
(2)从出发到1.6秒或4.8秒时,点P和点Q的距离是10cm.
答案解析:(1)设P、Q两点从出发开始到x秒时四边形PBCQ的面积为33cm2,则PB=(16-3x)cm,QC=2xcm,根据梯形的面积公式可列方程:
1
2
(16-3x+2x)×6=33,解方程可得解;
(2)作QE⊥AB,垂足为E,设运动时间为t秒,用t表示线段长,用勾股定理列方程求解.
考试点:一元二次方程的应用.

知识点:(1)主要用到了梯形的面积公式:S=
1
2
(上底+下底)×高;(2)作辅助线是关键,构成直角三角形后,用了勾股定理.