(理)如图,已知正三棱柱ABC-A1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是( ) A.90° B.60° C.45° D.30°
问题描述:
(理)如图,已知正三棱柱ABC-A1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是( )
A. 90°
B. 60°
C. 45°
D. 30°
答
设三棱柱ABC-A1B1C1的棱长等于2,延长MC1到N使MN=BB1,连接AN,则
∵MN∥BB1,MN=BB1,∴四边形BB1NM是平行四边形,可得B1N∥BM
因此,∠AB1N(或其补角)就是异面直线AB1和BM所成角
∵Rt△B1C1N中,B1C1=2,C1N=1,∴B1N=
5
∵Rt△ACN中,AC=2,CN=3,∴AN=
13
又∵正方形AA1B1B中,AB1=2
2
∴△AB1N中,cos∠AB1N=
=0,可得∠AB1N=90°5+8−13 2×
×2
5
2
即异面直线AB1和BM所成角为90°
故选:A