高一数学【函数&方程】

问题描述:

高一数学【函数&方程】
已知方程x^2+bx+1=0的两根为α,β(α≠β),则方程x^2+(b-2)x-b的两根分别为_________.

经提醒,我觉得第一个方程该是x²+bx-1=0
根据题意,由韦达定理,得
α+β=-b
αβ=-1
设新方程程x²+(b-2)x-b=0的两根为m和n,由韦达定理,容易得
m+n=2-b=(1+α)+(1+β)
mn
=-b
=α+β
=1-1+α+β
=1+αβ+α+β
=(1+α)(1+β)
所以m=1+α,n=1+β
也就是新方程的两根分别是:1+α和1+β