若x平方-x-√3=0,则【(x平方-x)的平方-3+√3】分之(x平方-x+√3)的值等于()

问题描述:

若x平方-x-√3=0,则【(x平方-x)的平方-3+√3】分之(x平方-x+√3)的值等于()

即x²-x=√3
所以原式=(3-3+√3)分之(√3+√3)
=√3分之2√3
=2