为什么旋度和散度可以完全确定一个矢量场?

问题描述:

为什么旋度和散度可以完全确定一个矢量场?
旋度和散度是数学的定义,Maxwell方程组也就仅仅是旋度和散度的表达式,为何确定了矢量场的旋度和散度就可以完全确定一个矢量场呢?最好使用文字说明,公式的说明看了不少,《矢量分析》也没怎么讲清楚,如果可以的话从原理和意义上说明比较好懂些,

任意一个向量场记为(P,Q,R),P,Q,R是三个分量,都是空间位置的函数,旋度和散度的表达式就不写了,如果把向量场中的P,Q,R当做未知量的话,散度是标量能确定一个唯一的方程,旋度是矢量能确定三个方程,但实际上旋度中三个...