椭圆公式:x^2/2+y^2=1 圆:x^2+y^2=2/3 圆切线交椭圆于A、B,证明以AB为直径的圆恒过定点
问题描述:
椭圆公式:x^2/2+y^2=1 圆:x^2+y^2=2/3 圆切线交椭圆于A、B,证明以AB为直径的圆恒过定点
答
设AB:y=kx+m,A(x1,y1)B(x2,y2)则有:y1=kx1+m,y2=kx2+m由于AB于圆相切则圆心(0,0)到AB距离为半径即:√(2/3)=|k*0-0+m|/[√(1+k^2)]得:2k^2+2=3m^2 ----(1)联立y=kx+m与x^2+2y^2=2得:(1+2k^2)x^2+4kmx+2m^2-2=0则...