lim(x→0)根号(1+x^3)-1/1-cos根号(x-sinx)

问题描述:

lim(x→0)根号(1+x^3)-1/1-cos根号(x-sinx)

lim(x→0)[√(1+x³)-1]/[1-cos√(x-sinx)]=lim(x→0)(x³/2)/[(x-sinx)/2]=lim(x→0) x³/(x-sinx)=lim(x→0) 2x²/(1-cosx)=lim(x→0) 2x²/(x²/2)=4希望对你有帮助,望采纳,谢谢~...