函数f(x)定义域为R,x、y属于R,x、y不等于0时恒有f(xy)=f(x)+f(y),若f(根号7+根号2)+f(根号7-根号2)=2,则f[1/(根号26)+1]+f[1/(根号26)-]=?
问题描述:
函数f(x)定义域为R,x、y属于R,x、y不等于0时恒有f(xy)=f(x)+f(y),若f(根号7+根号2)+f(根号7-根号2)=2,则f[1/(根号26)+1]+f[1/(根号26)-]=?
答
f(xy)=f(x)+f(y),令x=y=1,有f(1)=0,令x=y=-1,有f(-1) = 0.
f[1/(根号26)+1]+f[1/(根号26)-1]= f([1/(根号26)+1] * [1/(根号26)-1])
=f(1/25) = f(1/5 * 1/5) = 2f(1/5).
2=f(根号7+根号2)+f(根号7-根号2) = f([根号7+根号2] * [根号7-根号2]) = f(5)
取x=5,y=1/5,得0=f(1)=f(5 * (1/5)) = f(5) + f(1/5),所以f(1/5) = - f(5) = -2.
从而f[1/(根号26)+1]+f[1/(根号26)-]= 2f(1/5) = -4.为什么2f(1/5)= -4?想不明白2=f(根号7+根号2)+f(根号7-根号2) = f([根号7+根号2] * [根号7-根号2]) = f(5)。从而f(5) = 2。取x=5,y=1/5,得0=f(1)=f(5 * (1/5)) = f(5) + f(1/5),所以f(1/5) = - f(5) = -2。从而f(1/5)= -2所以2f(1/5)= -4