已知函数f(x)=mx³+3x²-3x,m属于R,(1)若函数f(x)在x=-1处取得极值,并求f(x)在点M(1,f(1))处的切线方程(2)设m
问题描述:
已知函数f(x)=mx³+3x²-3x,m属于R,(1)若函数f(x)在x=-1处取得极值,并求f(x)在点M(1,f(1))处的切线方程(2)设m
数学人气:927 ℃时间:2019-12-14 21:50:05
优质解答
f'(x)=3mx^2+6x-3
所以f'(-1)=0
所以3m-9=0
m=3
所以f(x)=3x^3+3x^2-3x
(1)切线方程为f'(1)=12
f(1)=3
所以方程为y-3=12(x-1)
即y=12x-9
(2)令f(2)-27/16
所以 -27/16
所以f'(-1)=0
所以3m-9=0
m=3
所以f(x)=3x^3+3x^2-3x
(1)切线方程为f'(1)=12
f(1)=3
所以方程为y-3=12(x-1)
即y=12x-9
(2)令f(2)-27/16
所以 -27/16
我来回答
类似推荐
答
f'(x)=3mx^2+6x-3
所以f'(-1)=0
所以3m-9=0
m=3
所以f(x)=3x^3+3x^2-3x
(1)切线方程为f'(1)=12
f(1)=3
所以方程为y-3=12(x-1)
即y=12x-9
(2)令f(2)-27/16
所以 -27/16