如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合),连接AP,PB,过点O分别作OE⊥AP于E,OF⊥PB于F,则EF的长为( ) A.3 B.4 C.5 D.6
问题描述:
如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合),连接AP,PB,过点O分别作OE⊥AP于E,OF⊥PB于F,则EF的长为( )
A. 3
B. 4
C. 5
D. 6
答
∵点P是⊙O上的动点(P与A,B不重合),OE⊥AP于E,OF⊥PB于F,
∴根据垂径定理知,
∴AE=EP、BF=PF,即E为AP中点,F为PB中点,
∴EF为△APB中位线;
又AB=10,
∴EF=
AB=1 2
×10=5(三角形中位线定理);1 2
故选C.