∫lnx/2 求不定积分
问题描述:
∫lnx/2 求不定积分
答
∫ln(x/2) dx
= xln(x/2) - ∫x*[ln(x/2)]' dx
= xln(x/2) - ∫x*1/(x/2)*(1/2) dx
= xln(x/2) - ∫ dx
= xln(x/2) - x + C