100^3+99^3/100^3+1^+99^3+97^3/99^3+2^3……+51^3+1^/51^3+50^3=?(100^3+99^3)/(100^3+1^3)+(99^3+97^3)/(99^3+2^3)+……+(51^3+1^3)/(51^3+50^3)=?规律是 (m^3+(m-n)^3)/(m^3+n^3)=(m+(m-n))/(m+n)例子 (3^3+2^3)/(3^3+1^3)=(3+2)/(3+1)

问题描述:

100^3+99^3/100^3+1^+99^3+97^3/99^3+2^3……+51^3+1^/51^3+50^3=?
(100^3+99^3)/(100^3+1^3)+(99^3+97^3)/(99^3+2^3)+……+(51^3+1^3)/(51^3+50^3)=?
规律是 (m^3+(m-n)^3)/(m^3+n^3)=(m+(m-n))/(m+n)
例子 (3^3+2^3)/(3^3+1^3)=(3+2)/(3+1)

(100^3+99^3)/(100^3+1^3)+(99^3+97^3)/(99^3+2^3)+……+(51^3+1^3)/(51^3+50^3)=?
规律是 (m^3+(m-n)^3)/(m^3+n^3)=(m+(m-n))/(m+n)
例子 (3^3+2^3)/(3^3+1^3)=(3+2)/(3+1)

(100^3+99^3)/(100^3+1^3)+(99^3+97^3)/(99^3+2^3)+(98^3+95^3)/(98^3+98^3+3^3)+...+(51^3+1^3)/(51^3+50^3)=(100+99)/(100+1)+(99+97)/(99+2)+……+(51+1)/(51+50)=(199+196+193+……+52)/101=[(199+52)+(196+55)+...