已知圆心角120°的扇形AOB,r为1,c为弧AB中点,点D,E分别在半径OA,OB上,若CD^2+CE^2+DE^2=26/9求(OD+OE)max
问题描述:
已知圆心角120°的扇形AOB,r为1,c为弧AB中点,点D,E分别在半径OA,OB上,若CD^2+CE^2+DE^2=26/9求(OD+OE)max
答
设OD= a ,OE =b ,由余弦定理知CD^2=CO^2+DO^2-2CO·DOcos60°=a^2-a+1同理可得CE^2=b^2-b+1,DE^2=a^2+ab+b^2从而CD^2+CE^2+DE^2 =2(a^2+b^2)-(a+b)+ab+2=26/9即 2(a^2+b^2)-(a+b)+ab-8/9=02(a+b)^2-(a+b)-3a...